DPP - Thermal Expansion

Video Solution on Website:-

Video Solution on YouTube:-

https://physicsaholics.com/home/courseDetails/87

https://youtu.be/PATQzyAO1nw

Written Solution on Website:-

Q 1. Two elastic rods are joined between fixed supports as shown in the figure. Condition for no change in the lengths of individual rods with the increase of temperature is $\left(\mathrm{a}_{1}, \mathrm{a}_{2}=\right.$ linear expansion coefficient, $\mathrm{A}_{1}, \mathrm{~A}_{2}=$ Area of rods, $\mathrm{Y}_{1}, \mathrm{Y}_{2}=$ young modulus $)$

(a) $\frac{A_{1}}{A_{2}}=\frac{\alpha_{1} Y_{1}}{\alpha_{2} Y_{2}}$
(b) $\frac{A_{1}}{A_{2}}=\frac{L_{1} \alpha_{1} Y_{1}}{L_{2} \alpha_{2} Y_{2}}$
(c) $\frac{A_{1}}{A_{2}}=\frac{L_{2} \alpha_{2} Y_{2}}{L_{1} \alpha_{1} Y_{1}}$
(d) $\frac{A_{1}}{A_{2}}=\frac{\alpha_{2} Y_{2}}{\alpha_{1} Y_{1}}$

Q 2. An iron tyre is to be fitted onto a wooden wheel 1.0 metre in diameter. The diameter of the tyre is 6 mm , smaller than that of the wheel. The tyre should be heated so that its temperature increases by a minimum of (given coefficient of volume expansion of iron is $3.6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$)
(a) $167^{\circ} \mathrm{C}$
(b) $334^{\circ} \mathrm{C}$
(c) $500^{\circ} \mathrm{C}$
(d) $1000^{\circ} \mathrm{C}$

Q 3. When a block of iron floats in mercury at $0^{\circ} \mathrm{C}$, a fraction K_{1} of its volume is submerged, while at the temperature $60^{\circ} \mathrm{C}$, a fraction K_{2} is seen to be submerged. If the coefficient of volume expansion of iron is $\gamma_{F e}$, and that of mercury $\gamma_{H g}$, then the ratio K_{1} / K_{2} can be expressed as -
(a) $\frac{1+60 \gamma_{F e}}{1+60 \gamma_{H g}}$
(b) $\frac{1-60 \gamma_{\mathrm{Fe}}}{1+60 \gamma_{\mathrm{Hg}}}$
(c) $\frac{1+60 \gamma_{F e}}{1-60 \gamma_{H g}}$
(d) $\frac{1+60 \gamma_{\mathrm{Hg}}}{1+60 \gamma_{\mathrm{Fe}}}$

Q 4. Two rods one of aluminium and the other made of steel, having initial length 1_{1} and 1_{2} are connected together to form a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion for aluminium and steel are a_{a} and a_{s} respectively. If the length of each rod increases by the same amount when their temperature are raised by $t^{\circ} \mathrm{C}$, then find the ratio $l_{1} /\left(l_{1}+l_{2}\right)$ -
(a) a_{s} / a_{a}
(b) a_{a} / a_{s}
(c) $a_{s} /\left(a_{a}+a_{s}\right)$
(d) $a_{a} /\left(a_{a}+a_{s}\right)$

Q 5. An iron ball is heated. The percentage increase will be the largest in -

(a) diameter
(b) surface area
(c) volume
(d) density

Q 6. Two holes of unequal diameters d_{1} and $\mathrm{d}_{2}\left(\mathrm{~d}_{1}>\mathrm{d}_{2}\right)$ are cut in a metal sheet. If the sheet is heated-
(a) Both d_{1} and d_{2} will decrease
(b) Both d_{1} and d_{2} will increase
(c) d_{1} will increase, d_{2} will decrease
(d) d_{1} will decrease, d_{2} will increase

Q 7. Two rods of lengths l_{1} and l_{2} are made of materials whose coefficient of linear expansions are a_{1} and a_{2}. If the difference between two lengths is independent of temperature-
(a) $\frac{\ell_{1}}{\ell_{2}}=\frac{\alpha_{1}}{\alpha_{2}}$
(b) $\frac{\ell_{1}}{\ell_{2}}=\frac{\alpha_{2}}{\alpha_{1}}$
(c) $\ell_{2}^{2} \alpha_{1}=\ell_{1}^{2} \alpha_{2}$
(d) $\frac{\alpha_{1}^{2}}{\ell_{1}}=\frac{\alpha_{2}^{2}}{\ell_{2}}$

Q 8. Three rods of equal length are joined to form anequilateral triangle $A B C$. D is midpoint of $A B$. The coefficient of linear expansion is a_{1} for $A B$, and a_{2} for $A C$ and BC . If the distance DC remains constant for small changes in temperature-
(a) $a_{1}=a_{2}$
(b) $a_{1}=2 a_{2}$
(c) $\mathrm{a}_{1}=4 \mathrm{a}_{2}$
(d) $a_{1}=\frac{1}{2} a_{2}$

Q 9. A uniform metal rodis used as a bar pendulum. If the room temperature rises by $10^{\circ} \mathrm{C}$, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per ${ }^{\circ} \mathrm{C}$, the period of the pendulum will have percentage increase of-
(a) -2×10^{-3}
(b) -1×10^{-3}
(c) 2×10^{-3}
(d) 1×10^{-3}

Q 10. A vessel is partly filled with a liquid. Coefficient of cubical expansion of material of the vessel and liquid are g_{v} and g_{L} respectively. If the system is heated, then volume unoccupied by the liquid will necessarily-
(a) Remain unchanged if $g_{V}=g_{L}$
(b) Increase if $g \vee=g_{L}$
(c) Decrease if $\mathrm{g}_{\mathrm{v}}=\mathrm{g}_{\mathrm{L}}$
(d) None of these

Q 11. The volume of the bulb of a mercury thermometer at $0^{\circ} \mathrm{C}$ is V_{0} and cross-section of the capillary is A_{0}. The coefficient of linear expansion of glass is ag_{g} per ${ }^{\circ} \mathrm{C}$ and the cubical expansion of mercury g_{m} per ${ }^{\circ} \mathrm{C}$. If the mercury just fills the bulb at $0^{\circ} \mathrm{C}$, what is the length of mercury column in capillary at $\mathrm{T}^{\circ} \mathrm{C}$ -
(a) $\frac{V_{0} T\left(\gamma_{m}+3 \alpha_{g}\right)}{A_{0}\left(1+2 \alpha_{g} T\right)}$
(b) $\frac{V_{0} T\left(\gamma_{m}-3 \alpha_{g}\right)}{A_{0}\left(1+2 \alpha_{g} T\right)}$
(c) $\frac{V_{0} T\left(\gamma_{m}+2 \alpha_{g}\right)}{A_{0}\left(1+3 \alpha_{g} T\right)}$
(d) $\frac{V_{0} T\left(\gamma_{m}-2 \alpha_{g}\right)}{A_{0}\left(1+3 \alpha_{g} T\right)}$

Q 12. A beaker is completely filled with water at $4^{\circ} \mathrm{C}$.If expansion in beacker is negligible, It must overflow -
(a) when heated but not when cooled
(b) when cooled but not when heated
(c) both when heated or cooled
(d) neither when heated nor when cooled

Q 13. Match The Column

Column I

(A) When temperature increases then time period of pendulum [rod is of metal]
(B) When temperature decreases
then time period of pendulum [rod is of metal]
(C) A cavity is inside of metal sphere then on increasing the temperature
(D) Radius of A hole in a circular plate on increasing temperature

Column II

(P) Decrease
(Q) Increase
(R) Same
(S) Can't say anything

Answer Key

Q. 1	d	Q. 2	c	Q. 3	a	Q. 4	c	Q. 5	c
$\mathbf{Q . 6}$	b	Q. 7	b	Q. 8	c	Q. 9	d	$\mathbf{Q . 1 0}$	b
Q. 11	b	Q. 12	c						

Ans. 13) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{Q}$

