

DPP – Thermal Expansion				
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/87			
Video Solution on YouTube:-	https://youtu.be/PATQzyAO1nw			
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/27			

Q 1. Two elastic rods are joined between fixed supports as shown in the figure. Condition for no change in the lengths of individual rods with the increase of temperature is $-(a_1,a_2 = linear expansion coefficient, A_1, A_2 = Area of rods, Y_1, Y_2 = young modulus)$

- Q 2. An iron tyre is to be fitted onto a wooden wheel 1.0 metre in diameter. The diameter of the tyre is 6 mm, smaller than that of the wheel. The tyre should be heated so that its temperature increases by a minimum of (given coefficient of volume expansion of iron is 3.6 x 10⁻⁵/°C)

 (a) 167°C
 (b) 334°C
 (c) 500°C
 (d) 1000°C
- Q 3. When a block of iron floats in mercury at 0°C, a fraction K_1 of its volume is submerged, while at the temperature 60°C, a fraction K_2 is seen to be submerged. If the coefficient of volume expansion of iron is γ_{Fe} , and that of mercury γ_{Hg} , then the ratio K_1 / K_2 can be expressed as –

(a)
$$\frac{1+60\gamma_{Fe}}{1+60\gamma_{Hg}}$$
 (b) $\frac{1-60\gamma_{Fe}}{1+60\gamma_{Hg}}$ (c) $\frac{1+60\gamma_{Fe}}{1-60\gamma_{Hg}}$ (d) $\frac{1+60\gamma_{Hg}}{1+60\gamma_{Fe}}$

Q 4. Two rods one of aluminium and the other made of steel, having initial length l_1 and l_2 are connected together to form a single rod of length $l_1 + l_2$. The coefficients of linear expansion for aluminium and steel are a_a and a_s respectively. If the length of each rod increases by the same amount when their temperature are raised by t°C, then find the ratio $l_1/(l_1 + l_2) - (a_1 + a_2) - (a_2 + a_3) = (a_1 + a_3) + (a_2 + a_3) = (a_3 + a_3) + (a_3 + a_3) + (a_3 + a_3) + (a_3 + a_3) = (a_3 + a_3) + (a_3 + a_3)$

(a) a_s / a_a	(b) a_a/a_s
(c) $a_{s}/(a_{a}+a_{s})$	(d) $a_a / (a_a + a_s)$

Q 5. An iron ball is heated. The percentage increase will be the largest in –

(a) diameter(c) volume

(b) surface area(d) density

- Q 6. Two holes of unequal diameters d_1 and d_2 ($d_1 > d_2$) are cut in a metal sheet. If the sheet is heated–
 - (a) Both d_1 and d_2 will decrease
 - (b) Both d_1 and d_2 will increase
 - (c) d_1 will increase, d_2 will decrease
 - (d) d_1 will decrease, d_2 will increase
- Q 7. Two rods of lengths l₁ and l₂ are made of materials whose coefficient of linear expansions are a₁ and a₂. If the difference between two lengths is independent of temperature–

(a)
$$\frac{\ell_1}{\ell_2} = \frac{\alpha_1}{\alpha_2}$$

(b) $\frac{\ell_1}{\ell_2} = \frac{\alpha_2}{\alpha_1}$
(c) $\ell_2^2 \alpha_1 = \ell_1^2 \alpha_2$
(d) $\frac{\alpha_1^2}{\ell_1} = \frac{\alpha_2^2}{\ell_2}$

- Q 8. Three rods of equal length are joined to form an equilateral triangle ABC. D is midpoint of AB. The coefficient of linear expansion is a_1 for AB, and a_2 for AC and BC. If the distance DC remains constant for small changes in temperature-(a) $a_1 = a_2$ (b) $a_1 = 2a_2$ (c) $a_1 = 4a_2$ (d) $a_1 = \frac{1}{2}a_2$
- Q 9. A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10°C, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per °C, the period of the pendulum will have percentage increase of-(a) -2×10^{-3} (b) -1×10^{-3} (c) 2×10^{-3} (d) 1×10^{-3}
- Q 10. A vessel is partly filled with a liquid. Coefficient of cubical expansion of material of the vessel and liquid are g_V and g_L respectively. If the system is heated, then volume unoccupied by the liquid will necessarily-
 - (a) Remain unchanged if $g_V = g_L$
 - (b) Increase if $g_V = g_L$
 - (c) Decrease if $g_V = g_L$
 - (d) None of these
- Q 11. The volume of the bulb of a mercury thermometer at 0°C is V₀ and cross-section of the capillary is A₀. The coefficient of linear expansion of glass is a_g per°C and the cubical expansion of mercury g_m per °C. If the mercury just fills the bulb at 0°C, what is the length of mercury column in capillary at T°C-

	\mathcal{O}	2	1 2
(a)	$V_0T(\gamma_m+3\alpha_g)$		(b) $\frac{V_0 T(\gamma_m - 3\alpha_g)}{\gamma_m - 3\alpha_g}$
(a)	$A_0(1+2\alpha_g T)$		$(0) \frac{1}{A_0(1+2\alpha_g T)}$
(a)	$V_0 T(\gamma_m + 2\alpha_g)$		$V_0 T(\gamma_m - 2\alpha_g)$
(C)	$A_0(1+3\alpha_g T)$		(d) $\overline{A_0(1+3\alpha_g T)}$

- Q 12. A beaker is completely filled with water at 4°C.If expansion in beacker is negligible, It must overflow
 - (a) when heated but not when cooled

(b) when cooled but not when heated (c) both when heated or cooled

(d) neither when heated nor when cooled

Q 13. Match The Column **Column I**

Column II

- (P) Decrease
- (A) When temperature increases then time period of pendulum [rod is of metal] (B) When temperature decreases
- then time period of pendulum [rod is of metal]
- (C) A cavity is inside of metal sphere then on increasing the temperature
- (D) Radius of A hole in a circular plate on increasing temperature

- (Q) Increase
- (R) Same

(S) Can't say anything

Answer Key

Q.1 d	Q.2 c	Q.3 a	Q.4 c	Q.5 c
Q.6 b	Q.7 b	Q.8 c	Q.9 d	Q.10 b
Q.11 b	Q.12 c		<u>.</u>	•

Ans. 13) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow Q$